

Rapport de Projet : Protocoles Internet
(Client Peer-to-Peer de partage d’arbres de Merkle)

I.​ Introduction / Contexte
Le projet consiste en l'implémentation d’un client interagissant avec un serveur API REST qui nous partage

des informations sur des peers disponibles pour des échanges d’informations via UDP. Pour ce projet, nous avons
décidé de coder le client en Rust en utilisant la bibliothèque de runtime tokio ainsi que egui pour l’interface
graphique.

II.​ Fonctionnalité implémentées
Le protocole et sa version minimale décrite dans le sujet sont implémentés par notre client:
- s'enregistrer avec le serveur et maintenir la connexion indéfiniment
- rendre une arborescence disponible
- télécharger les fichiers d'un peer

ensuite concernant l'efficacité du programme / les autres fonctionnalités :
- Nous pouvons télécharger l’arbre de Merkle partagé par les peers enregistrés.
- il est possible d'envoyer plusieurs paquets en même temps (asynchrone)
- il est possible de choisir un chunk ou big à télécharger
- nous avons implémenté Nat Traversal
- nous avons implémenté une GUI

III.​ Spécifications techniques de l'implémentation
​ Notre projet est structuré de la forme model / view. Le contenu du model se trouve dans la crate
client_network et la view dans client_gui. La communication entre les threads se fait via des canaux “crossbeam
channels” (c.f. Documentation Rust). L’interface graphique envoie des commandes via l’envoi de
“NetworkCommands” (FetchPeerList(), Ping(user), etc.) et la logique rapporte les informations via des
“NetworksEvents” (PeerListUpdated(list), DataReceived, etc.).

Détail d'implémentation - Logique de récupération d’une adresse socket d’un peer :
Lorsque notre client souhaite récupérer une adresse socket UDP, il va procéder de la sorte :

Un thread dédié va d’abord envoyer une requête HTTP pour récupérer la liste d’adresse du peer enregistré au
serveur. Une fois cette liste récupérée, nous récupérons uniquement les adresses IPv4 de la liste (IPv6 non
implémenté). Le thread va ensuite effectuer cette procédure pour chaque adresse de la liste jusqu'à recevoir une
réponse d’une adresse :
-​ Envoi d’un ping à l'adresse puis attente de 1s.
-​ Si l’adresse a répondu, retourne cette adresse comme moyen de communication fiable.
-​ Sinon, envoi d’une requête Nat Traversal au serveur avec l’adresse du peer puis attente de 1s.
-​ Si réception de ping de l’adresse, on la retourne.
-​ Sinon, envoi d’un ping à l'adresse puis attente de 3s.
-​ Si l’adresse ne répond pas, on passe à la suivante.

Détail d'implémentation - Système de réémission de message (exponential backoff):
​ Nous utilisons un algorithme de backoff exponentiel pour remettre les paquets si ceux ci n’ont pas reçu de
réponse ou sont arrivés cassés ou incomplets. A chaque envoi de message, nous avons une RetryMessage contenant
le message à remettre, son nombre de tentatives d'émissions et l’heure unix à laquelle il faut le renvoyer au
prochain essai. Nous l’ajoutons dans une VecDequeue : un thread va se charger de récupérer le premier élément de
la queue, vérifier si l’heure de réémission est dépassée : si oui, le message est réémis et le champ retrymessage
associé voit son nombre de tentatives augmenter, sinon le message est remis en fin de queue. Ce système ne
garantit pas que les messages seront envoyés exactement à l’heure de leur réémission prévue mais le délai est censé
rester acceptable.

https://docs.rs/crossbeam-channel/latest/crossbeam_channel/

IV.​ Extensions implémentées
Notre client implémente les extensions suivantes :

-​ Messages NatTraversalRequest2 implementés
-​ Algorithme d’exponential backoff
-​ Interface graphique

V.​ Conclusion / Retour
​ Ce projet nous a permis d’utiliser en situation réelle des notions que l’on a apprises en cours comme la
communication en UDP, la gestion de congestion, réémission de message, communication asynchrone… Le fait
d’avoir effectué ce projet en Rust nous a également permis de découvrir ce langage moderne, ses points positifs
ainsi que négatifs.

​
​

VI.​ Sources / Bibliographie
https://doc.rust-lang.org/stable/rust-by-example/
https://docs.rs/http/latest/http/index.htm
https://docs.rs/p256/latest/p256/
https://doc.rust-lang.org/std/net/struct.UdpSocket.html
https://docs.rs/sha2/latest/sha2/
https://rutracker.org/forum/index.php
https://docs.rs/egui/latest/egui/
https://docs.rs/crossbeam/latest/crossbeam/

https://doc.rust-lang.org/stable/rust-by-example/
https://docs.rs/http/latest/http/index.htm
https://docs.rs/p256/latest/p256/l
https://doc.rust-lang.org/std/net/struct.UdpSocket.html
https://docs.rs/sha2/latest/sha2/
https://rutracker.org/forum/index.php
https://docs.rs/egui/latest/egui/
https://docs.rs/crossbeam/latest/crossbeam/

	Rapport de Projet : Protocoles Internet
	I.​Introduction / Contexte
	II.​Fonctionnalité implémentées
	III.​Spécifications techniques de l'implémentation
	Détail d'implémentation - Logique de récupération d’une adresse socket d’un peer :
	Détail d'implémentation - Système de réémission de message (exponential backoff):

	IV.​Extensions implémentées
	V.​Conclusion / Retour
	VI.​Sources / Bibliographie

