
Projet de Programmation synchrone

M2 Informatique UP & 3A EIDD

2025–2026

1 Introduction

Les langages synchrones sont utilisés pour développer des logiciels de contrôle-commande

dans de nombreux domaines industriels, notamment dans le cadre de systèmes critiques. Le

but de ce projet est de vous donner une expérience préliminaire de ce genre de développement,

au delà des petits programmes que vous avez écrits lors des séances de travaux pratiques de la

première moitié du semestre. Il s’agira pour vous d’écrire un programme synchrone contrôlant

un dispositif physique simplifié mais non-trivial. Nous évaluerons sa performance à l’aide d’un

simulateur lui aussi écrit sous la forme d’un programme synchrone, et qui sera mis à votre

disposition afin de permettre l’auto-évaluation.

Le dispositif physique que votre programme va chercher à contrôler consiste en un véhicule

autonome lancé dans une ville virtuelle en deux dimensions. Le but de ce véhicule est de franchir

toutes les étapes d’un parcours préétabli tout en respectant un certain nombre de contraintes,

parmi lesquelles le respect des limitations de vitesse, des feux rouges, ou encore l’évitement des

obstacles. Votre code sera évalué sur sa capacité à arriver au bout de parcours de plus en plus

complexes dans le respect des dites contraintes. La qualité de votre code (simplicité, présence

de commentaires, modularité, clarté, etc.) sera également évaluée.

Consignes générales. Le projet est à réaliser en binôme. Tout échange de code entre
binômes est strictement interdit et entraı̂nera l’attribution de 0 aux binômes concernés.

2 Environnement de développement

2.1 Avant de débuter

Avant de vous lancer dans la réalisation du projet, vous devez avoir installé :

— un système d’exploitation de type UNIX comme GNU/Linux ou macOS,

— la chaı̂ne de développement C standard incluant le compilateur GCC et GNU Make

4.0+
1
,

— le gestionnaire de version Git,

1. Les utilisateurs et utilisatrices de macOS devront installer GNU Make depuis leur gestionnaire de paquet

favori. Une fois installé, il leur faudra l’utiliser via la commande gmake plutôt que make.

1



— la bibliothèque multimédia SDL2 (C), installable via votre gestionnaire de paquets,

— le compilateur Heptagon, installable via OPAM,

— optionnellement, les bibliothèques Pandas et Matplotlib (Python), installables via pip.

2.2 Débuter

Votre code, écrit en Heptagon, doit s’insérer dans un squelette composé de code Heptagon et

de code C. La distribution de ce squelette, le suivi du projet et le relevé final seront intégralement

réalisés via Git. Pour vous lancer dans votre copie du projet, vous devez :

1. forker le dépôt Git du cours,

2. ajouter vos enseignants @guatto, @baudart et @letouzey avec le rôle de développeurs à

votre fork,

3. éditer le fichier AUTEURS pour y spécifier les membres de votre binôme,

4. passer votre fork en mode privé.

La dernière étape est essentielle : tout projet dont le dépôt Git est public se verra automa-
tiquement attribué la note de 0. Une fois ces trois étapes réalisées, vous pouvez commencer

à travailler sur le projet en vous aidant des informations disponibles dans les sections suivantes

du document.

2.3 Rendre le projet

Le projet est à réaliser avant le

vendredi 19 décembre 2025 à 23h50.

Toute modification ultérieure à cette date sera ignorée. Le rendu se déroulera automatiquement

via Git, vous n’avez donc rien de particulier à faire si vous avez suivi les instructions ci-dessus.

Rapport. Votre dépôt doit contenir un rapport présentant succinctement les fonctionnalités

réalisées, en insistant sur les éventuels points notables ou originaux de votre solution. Le

rapport doit faire deux pages maximum et consister en un fichier au format PDF présent

dans projet/RAPPORT.pdf au moment du rendu.

3 Guide du projet

3.1 Architecture du code

Le projet se présente sous la forme d’un ensemble de fichiers écrits en C et en Heptagon,

accompagnés d’un Makefile et d’un bref README.

Les fichiers écrits en C réalisent diverses tâches utilitaires, ainsi que l’interface graphique du

projet. Ils utilisent la bibliothèque SDL2 pour l’interfaçage avec le système. Leur lecture n’est

pas obligatoire, mais peut vous éclairer sur le fonctionnement concret du projet.

Les fichiers Heptagon contiennent le code du simulateur, ainsi que le code du contrôleur de

véhicule. Nous vous recommandons de les lire avant de commencer à développer votre projet.

2



L

R

RC SO FCB

∆

D

Figure 1 – Schéma général du véhicule

— Le fichier mathext.epi déclare un jeu de fonctions mathématiques élémentaires.

— Les fichiers trace.epi et debug.epi déclarent un jeu de fonctions et nœuds utiles

au débogage et à la mise au point de vos programmes. Nous en discuterons en section 5.

— Le fichier globals.ept contient les définitions de types et de constantes globales

utilisées par le simulateur et votre contrôleur.

— Le fichier utilities.ept contient divers nœuds et fonctions utilitaires.

— Le fichier control.ept est le seul fichier que vous devez modifier dans la version
finale, en y implémentant le nœud controller. La version qui vous est distribuée

contient un contrôleur trivial qui laisse le véhicule inactif.

— Le fichier vehicle.ept contient la partie du simulateur chargée du véhicule et de son

interfaçage avec le contrôleur.

— Le fichier city.ept contient la partie du simulateur chargée de simuler la ville dans

laquel le véhicule se déplace.

— Le fichier challenge.ept est le fichier Heptagon principal, chargé d’interconnecter

les différents composants du simulateur.

Notez donc que toute modification des fichiers fournis sera ignorée par l’infrastructure

d’évaluation pour la note finale, à l’exception de celles apportées à control.ept.

3.2 Fonctionnement du véhicule

Le véhicule que vous devez contrôler est une mini-automobile très simplifiée mais équipée

d’actuateurs et de capteurs décrits ci-dessous. La figure 1 en donne une vue schématique.

— Elle dispose de deux roues arrières de diamètre D cm. Leurs moyeux sont distants de B
cm. Ces roues sont motrices : elles sont connectées par deux axes indépendants à deux

moteurs distincts, L (pour left) et R (pour right). Votre contrôleur fixe leurs vitesses
respectives.

— Elle dispose de deux capteurs colorimétriques.

— Le capteur ventral RC (pour road color) fournit la couleur de la route sous l’automobile.

3



Figure 2 – Un exemple de carte

Il est disposé à une distance ∆ cm du point à mi-chemin des moyeux des deux roues.

— Le capteur frontal FC (pour front color) fournit la couleur d’un éventuel feu rouge en

face de l’automobile.

Votre contrôleur peut lire les couleurs détectées par ces deux capteurs.

— Elle dispose d’un sonar SO capable de détecter la proximité d’un obstacle (passant). Votre

contrôleur a accès à la distance de l’obstacle détectée par le sonar.

3.3 Fonctionnement de la ville

Le but de votre code est de contrôler le véhicule afin que celui-ci accomplisse un parcours à

travers la ville, sans accident et en respectant l’itinéraire prescrit. Le projet propose une série

de villes, les premières étant les plus faciles à traverser. Une des cartes les plus difficiles est

représentée à la figure 2.

La route. Chaque ville comprend un certain nombre de routes interconnectées sur lesquelles

votre véhicule est censé se déplacer. Toute sortie de route constitue un accident qui met fin

à la simulation. Les routes sont marquées au sol pour vous aider à éviter un tel sort.

Le marquage est représenté à la figure 3. La bande bleue foncé marque le centre de la route,

la bande cyan son côté gauche, la bande magenta son côté droit. Votre véhicule doit chercher

à rester au centre, sur la bande bleue. Le contrôleur a accès à cette couleur via son capteur

ventral RC . Attention : lorsque votre véhicule se situe à la frontière entre plusieurs bandes, il

capture une combinaison des couleurs de chaque bande.

En plus des bandes de guidage, le marquage fournit également des bandes vertes et rouges

qui signalent respectivement la présence d’une étape ou d’un feu de signalisation. Nous allons

4



gauche

guide

droite

feuétape

Figure 3 – Marquage au sol des routes

décrire ces deux dispositifs et comment ils doivent être pris en compte par votre contrôleur.

L’itinéraire. Chaque ville spécifie un itinéraire auquel votre contrôlleur a accès. Il s’agit d’un

tableau d’actions. Chaque action appartient à une certaine catégorie et spécifie un paramètre,

ce dernier étant un nombre à virgule flottante dont la signification dépend de la catégorie de

l’action. Les trois catégories d’action sont :

1. Go, qui indique que le véhicule doit avancer jusqu’à la prochaine étape à la vitesse maximale

indiquée par le paramètre ;

2. Turn, qui indique que le véhicule doit effectuer une rotation sur lui même, dans le sens

inverse des aiguilles d’une montre et d’un angle en degrés indiqué par la valeur du

paramètre ;

3. Stop, qui indique que l’itinéraire est terminé — la valeur du paramètre n’est pas utilisée.

L’itinéraire est donc principalement formé d’actions Go qui indiquent qu’il faut atteindre la

prochaine étape, marquée par une bande verte sur la route, et par des actions Turn, qui indiquent

que le véhicule doit tourner sur lui même à l’étape courante.

Les feux de signalisation. Un marquage au sol de couleur rouge indique la présence d’un feu

de signalisation. Si votre véhicule est présent sur un de ces marquages, son capteur frontal RC
vous donne accès à la couleur courante du feu. Votre véhicule doit, bien entendu, les respecter !

Les obstacles. Un dernier ingrédient est la présence potentielle d’obstacles (passants, etc.) à

proximité de la route. Vous devez vous arrêter si vous détectez un obstacle à proximité à l’aide

du sonar, faute de provoquer une collision qui serait dommageable à votre véhicule, à l’obstacle,

et à votre note finale au projet.

3.4 Compiler et tester son projet

Si vous avez installé les dépendances détaillées en section 2, il suffit d’invoquer make pour

compiler le projet. Les différentes cartes sont disponibles dans le sous-dossier assets/.

5



L’exécutable produit, scontest, prend en argument le chemin vers la carte sur laquelle votre

contrôleur doit être testé. Par souci de commodité, la cible make test lance votre projet sur

la première carte, ce qui devrait suffire pendant les premiers temps du développement.

4 Méthodologie suggérée

Il est conseillé d’attaquer ce projet de programmation avec méthode. La quantité de code

nécessaire à sa réalisation n’est sans doute pas très importante comparé à d’autres projets que

vous avez réalisés pendant vos études, mais ce code peut être assez délicat à concevoir et mettre

au point. Après avoir parcouru le code Heptagon de simulation, nous vous suggérons de

développer votre contrôleur en passant par les étapes fonctionnelles suivantes.

1. Avancer tout droit le long d’une route longiligne, par exemple celle de la carte 00, lorsque le

véhicule a été positionné avec un angle correct initialement. Le contrôleur doit être capable

d’avancer à la vitesse maximale fournie par l’itinéraire, et ce dans la bonne direction.

2. Corriger un angle initial désaxé, puis suivre une route incurvée — par exemple, celle de la

carte 02. (Les notions d’automatique de base fournies en cours peuvent être très utiles ici !)

3. Tourner d’un angle spécifié.

4. Détecter le nouveau segment de route après une rotation.

5. Interpréter les marques d’étape au sol et l’itinéraire.

6. Interpréter les balises d’arrêt indiquant les feux de signalisation, respecter ces derniers.

7. Interpréter le sonar et éviter d’entrer en collision avec les obstacles.

Une fois toutes ces fonctionnalités implémentées, il ne vous reste plus qu’à optimiser la qualité

de votre contrôleur sur autant de cartes que possible.

5 Trucs et astuces

Soutien au projet. Toutes les séances de travaux pratiques restantes sont désormais consacrées

intégralement à la réalisation du projet. Profitez-en pour discuter avec vos enseignants, qui sont

là pour ça, et vos camarades (mais pas d’échange de code !).

Débogage. Le code fourni dispose de fonctionnalités rudimentaires de débogage. Lisez l’in-

terface du module Debug, qui permet d’afficher sur la sortie standard les valeurs courantes

des flots accompagnées d’un message.

Graphage. Le module Trace, permet un débogage un peu plus sophistiqué que celui offert

par Debug. Il permet de tracer l’évolution de flots booléens, entiers ou flottants au cours

du temps — cf. l’interface du module. Son fonctionnement suppose que vous ayez installé

les bibliothèques Python que sont Matplotlib et Pandas. Une fois ceci fait, pour afficher les

courbes, vous devez lancer votre binaire scontest avec l’outil hept-plot fourni dans le

dossier tools/ du dépôt du cours.

6



6 Versions de ce document

Ce projet est l’adaptation à Heptagon par A. Guatto de celui co-réalisé en SCADE par E. Asarin

et M. Sighireanu de 2017 à 2019.

03/11/2025 Version initiale.

7


	Introduction
	Environnement de développement
	Avant de débuter
	Débuter
	Rendre le projet

	Guide du projet
	Architecture du code
	Fonctionnement du véhicule
	Fonctionnement de la ville
	Compiler et tester son projet

	Méthodologie suggérée
	Trucs et astuces
	Versions de ce document

